Stable Diffusion 3 Medium Text to Image
Stable Diffusion is a type of latent diffusion model that can generate images from text. It was created by a team of researchers and engineers from CompVis, Stability AI, and LAION. Stable Diffusion v2 is a specific version of the model architecture. It utilizes a downsampling-factor 8 autoencoder with an 865M UNet and OpenCLIP ViT-H/14 text encoder for the diffusion model. When using the SD 2-v model, it produces 768x768 px images. It uses the penultimate text embeddings from a CLIP ViT-H/14 text encoder to condition the generation process.
1import requests
2import json
3
4url = "https://api.segmind.com/v1/stable-diffusion-3-medium-txt2img"
5headers = {
6 "x-api-key": "YOUR_API_KEY",
7 "Content-Type": "application/json"
8}
9
10data = {
11 "prompt": "A whimsical and high-resolution highly realistic image of a panda in a vintage cosmonaut suit. The panda is holding a sign that reads 'I love flying to the moon!' in playful lettering. The panda's helmet has a small propeller on top and a Indian flag patch, adding to the cosmic vibe. The background features a retro-styled spaceship with rockets and stars, giving the impression of a thrilling journey through space",
12 "negative_prompt": "bad quality, poor quality, doll, disfigured, jpg, toy, bad anatomy, missing limbs, missing fingers, 3d, cgi",
13 "samples": 1,
14 "scheduler": "DPM++ 2M",
15 "num_inference_steps": 25,
16 "guidance_scale": 5,
17 "denoise": 1,
18 "seed": 468685,
19 "img_width": 1024,
20 "img_height": 1024,
21 "modelsamplingsd3_shift": 3,
22 "conditioningsettimesteprange_start": 0.1,
23 "conditioningsettimesteprange_stop": 1,
24 "base64": false
25}
26
27response = requests.post(url, headers=headers, json=data)
28
29if response.status_code == 200:
30 result = response.json()
31 print(json.dumps(result, indent=2))
32else:
33 print(f"Error: {response.status_code}")
34 print(response.text)
1import requests
2import json
3
4url = "https://api.segmind.com/v1/stable-diffusion-3-medium-txt2img"
5headers = {
6 "x-api-key": "YOUR_API_KEY",
7 "Content-Type": "application/json"
8}
9
10data = {
11 "prompt": "A whimsical and high-resolution highly realistic image of a panda in a vintage cosmonaut suit. The panda is holding a sign that reads 'I love flying to the moon!' in playful lettering. The panda's helmet has a small propeller on top and a Indian flag patch, adding to the cosmic vibe. The background features a retro-styled spaceship with rockets and stars, giving the impression of a thrilling journey through space",
12 "negative_prompt": "bad quality, poor quality, doll, disfigured, jpg, toy, bad anatomy, missing limbs, missing fingers, 3d, cgi",
13 "samples": 1,
14 "scheduler": "DPM++ 2M",
15 "num_inference_steps": 25,
16 "guidance_scale": 5,
17 "denoise": 1,
18 "seed": 468685,
19 "img_width": 1024,
20 "img_height": 1024,
21 "modelsamplingsd3_shift": 3,
22 "conditioningsettimesteprange_start": 0.1,
23 "conditioningsettimesteprange_stop": 1,
24 "base64": false
25}
26
27response = requests.post(url, headers=headers, json=data)
28
29if response.status_code == 200:
30 result = response.json()
31 print(json.dumps(result, indent=2))
32else:
33 print(f"Error: {response.status_code}")
34 print(response.text)
API Endpoint
https://api.segmind.com/v1/stable-diffusion-3-medium-txt2img
Parameters
prompt
requiredstring
Prompt to render
base64
optionalboolean
Base64 encoding of the output image.
false
conditioningsettimesteprange_start
optionalnumber
Conditioning set timestep range start
0.1
Range: 0.1 - 1conditioningsettimesteprange_stop
optionalnumber
Conditioning set timestep range stop
1
Range: 0.1 - 1denoise
optionalnumber
How much to transform the reference image
1
Range: 0.1 - 1guidance_scale
optionalnumber
Scale for classifier-free guidance
5
Range: 1 - 25img_height
optionalinteger
Image height can be between 512 and 2048 in multiples of 8
1024
img_width
optionalinteger
Image width can be between 512 and 2048 in multiples of 8
1024
modelsamplingsd3_shift
optionalinteger
Model Sampling SD3 Shift
3
Range: 1 - 10negative_prompt
optionalstring
Prompts to exclude, eg. 'bad anatomy, bad hands, missing fingers'
num_inference_steps
optionalinteger
Number of denoising steps.
25
Range: 10 - 100samples
optionalinteger
Number of samples to generate.
1
Range: 1 - 4scheduler
optionalstring
Type of scheduler.
"DPM++ 2M"
"DPM++ SDE Karras"
"DPM++ 2M Karras"
"DPM++ 2M SDE Karras"
"DPM++ 2M SDE Heun Karras"
"DPM++ 3M SDE Karras"
"LMS Karras"
"DPM2 Karras"
"DPM2 a Karras"
"DPM++ 2S a Karras"
"DPM++ 2M SDE Exponential"
+19 moreseed
optionalinteger
Seed for image generation.
-1
Range: -1 - 999999999999999Response Type
Returns: Text/JSON
Common Error Codes
The API returns standard HTTP status codes. Detailed error messages are provided in the response body.
Bad Request
Invalid parameters or request format
Unauthorized
Missing or invalid API key
Forbidden
Insufficient permissions
Not Found
Model or endpoint not found
Insufficient Credits
Not enough credits to process request
Rate Limited
Too many requests
Server Error
Internal server error
Bad Gateway
Service temporarily unavailable
Timeout
Request timed out